
Application Development

© University of Twente 7-1

Assignment 7

Content Application Development Day 7

Lecture

In the lecture animation and timers were introduced. This assignment covers several skills

learned in previous lectures and assignments, but this time with less detailed explanations.

Tutorial

In the tutorial you will practice extending the interactive map editor with path-finding capabilities.

It will calculate turns and distances to travel and includes and appendix with help on how to send

this to the car build in previous assignments.

At the end of day 7 you will be able to
◘ Create a userinterface with advanced interaction

◘ Use and apply libraries and code imported from online examples

◘ Apply A* pathfinding algorithm in a Java application.

◘ Realize a map editor based on tiles (panels).

Reading

Book: Head First Java: chapters 12-13,15,16 or from ‘Aan de slag met Java’: chapters 9.1-9.4 +

10.1-10.9

Extra exercise

The topics in lesson 7 are provided with examples that can be used in this assignment.

You can go through the exercises from the chapters mentioned above to increase your

understanding of the subject matter.

Assignment 7

7-2 © University of Twente

Expand the interactive map editor with path-finding capabilities

This assignment will extend the previous built application to make it suitable to generate driving

instructions for the previously built Rover car based on the path found. It will:

 Consider the orientation of the car: which direction is it facing?

 Calculate turns and distances to travel to generate driving instructions

 Show the car drive the path as an animation.

The calculated turns and distances to travel should be written in such a way that they can be

easily transferred to for instance the previous built Rover car. The instructions will look like:

Where “s” means steer and “d” means drive. In human language these example instructions are:

Steer 90 degrees clockwise.

Drive 100 cm.

Steer 90 degrees counter clockwise.

Drive 30 cm.

Steer 180 degrees clockwise.

Drive 60 cm.

Please note that to make this not too complex, we assume (for the time being) that our car can

make point turns, so steer 90 means it will make a point turn of 90 degrees. In reality, your car

might not be able to make this kind of turns.

Table of Contents
Expand the interactive map editor with path-finding capabilities ... 2

1. Show orientation of the car in the userinterface.. 3

2. Keep track of the orientation of the car in the calculated path ... 5

3. Generate driving ‘instructions’ ... 6

4. Animate the path of the car .. 7

Finish ... 8

Appendix: send the driving instructions to the car ... 9

Create an Arduino app that can read the driving instructions ... 9

Make Java app send instructions via Serial connection .. 10

Make Rover car respond to commands .. 10

s90d100s-90d30s180d60

Assignment 7

© University of Twente 7-3

1. Show orientation of the car in the userinterface
The application must know the orientation of the car, to be able to generate driving instructions.

The application will show the orientation of the car as a

triangle (a simple pointer). To accomplish this, change

the drawing method of class PixelPanel. The class
should already have a class-variable orientation. If

not, add it, and give it an initial value of -1 (= no

orientation).

The values of class-variable orientation will be the

amount of degrees: for N 0, E 90, S 180 and W 270

degrees. See also the picture for the ‘design’ of how to

handle orientation.

If for example the orientation is North (N), the variable

will have the value 0 and the paintComponent() method

of class PixelPanel will draw a triangle pointing North.

To draw a triangle facing the proper orientation (angle),

use the example below: (add it to the paintComponent() method)

This entire piece of code only has to be executed if the orientation is >= 0. Add an if-statement

that prevents execution of this part of the method, by adding an if statement before it.

The if-statement checks if orientation is smaller than 0 and return if that is the case (use
return;).

Next, in the setStart() method of the userinterface set the orientation of the panel to 0. We will

use this orientation as the default, but it should be possible (from the userinterface) to change it

(this is done in the next step). Also, in setWalkable(), set the orientation of the panel to -1.

Test the application. With ‘Start’ selected, and you click a tile, is the north-facing triangle drawn

when you click a tile? Click multiple tiles, to check if only one triangle is drawn.

Graphics2D g2 = (Graphics2D) g;
g2.setColor(Color.BLACK);

// create 2 arrays x,y to hold position for 3 points:
int x[] = new int[3], y[] = new int[3], n = 3;

// create points for triangle facing north:
x[0]=getWidth()/2; y[0]=0; // first point
x[1]=getWidth(); y[1]=getHeight(); // second point
x[2]=0; y[2]=getHeight(); // third point

// Create polygon which represents a triangle with the above vertices:
Polygon triangle = new Polygon(x, y, n);

// Rotate the triangle around it's center according to its orientation:
if (orientation>0)

g2.rotate(Math.toRadians(orientation), getWidth()/2, getHeight()/2);
// Draw the filled triangle:
g2.fill(triangle);

Assignment 7

7-4 © University of Twente

Change the orientation from the userinterface

Add buttons* to the userinterface which allow to change the

orientation.

These buttons should only be visible when the "Start" radio

button is selected. To accomplish this, put them in a panel,

make this panel a field** and show/hide the panel on click

of the radio buttons (this is explained later).

To hide the panel at startup, under Advanced properties,

remove the check at field ‘visible’.

Next, add eventhandlers to the N-E-S-W buttons. Example of code for eventhandler of button N:

The method setOrientation() is not there yet. Go to the class PixelPanel and generate it (via

Source > Generate Getters and Setters). Make sure it includes a line with a call to repaint() at

the last line of code.

Now add eventhandlers for the E, S and W buttons too. For each call of setOrientation(), change

the value of the orientation accordingly (N 0, E 90, S 180 and W 270).

Because we want to show the panel only when radio button ‘Start’ is active, we must add an

eventhandler: On change of radio buttons, add an ‘action performed’ eventhandler:

Which, for radio button ‘Start’, makes the panel which contains the N-E-S-W buttons visible:

panelOrientation.setVisible(true);

if (start==null) return; // if no start set yet, do noting
start.setOrientation(0); // north

* you are free to choose other

userinterface components if you

like.

**

The panel with the buttons

to change the orientation
could look like this

Assignment 7

© University of Twente 7-5

(Make sure you made panelOrientation a field as described in the beginning of this step. You

may have chosen a different name for this panel)

The other two buttons make the panel not-visible.

Run the application and check if the panel is shown only when ‘Start’ is selected. Also check if the

orientation of the triangle changes if you press the N-E-S-W buttons.

2. Keep track of the orientation of the car in the calculated
path
We will add code to the method that calculates the path.

First, in the part which clears a previous path (in a for-loop), set the orientation of the panel p to

-1.

To properly set the orientation for each tile in the path, we must check the location of the next

tile in the path and find from the current tile, were it lies. An example:

To find the next panel, use the code below. Add it inside the loop that shows the path, before the

call to the setBackground() method.

The comments are pseudo-code, which must become a call to a new method which compares the

orientation with two parameters, the current tile and the next tile.

Add a new method to the class which will do this comparison of the orientations, it should have

two PixelPanels as parameters, use variable names p and next for these (as used in the example

code below).

The new method must check for 4 possibilities: the next tile is to the North of the current, or to

the East, South or West. We will show you how to check the first option (if it is to the North):

if (i==0) { // if we are starting
 // compare orientation of start with panel p
}
if((i+1)<path.size()) {
 PixelPanel next = pixelPanels[path.get(i+1).getxPosition()][path.get(i+1).getyPosition()];
 // compare orientation of panel p with panel next
}

// where is the next tile?
if (p.y==next.y+1 && p.x==next.x) // N?
 next.setOrientation(0);

Assignment 7

7-6 © University of Twente

In this example we also determine the degrees the car must turn to change its orientation to face

the next tile. We will use this to generate driving instructions later.

Add else if () ... code for the other 3 conditions (E, S or W). For each if-statement the

condition is different, and also the parameter for next.setOrientation(...) will get different

values!

After these four if-statements, we can determine a value for the angle we must use to steer to

the next tile. We use a new variable ‘steer’ for this. The value for steer can be determined as

follows:

When the method is ready, call it twice in the loop at the 2 spots where you added the code (in

the method that calculates the path): it is at the 2 spots with the comment “compare orientation

of ...”. In the first call, we call that method with the start-tile as first parameter, which is the
variable start.

Now run the application and test if the orientation throughout the entire path is shown correctly.

Test with multiple turns in the path, so see if all four options are handled correctly.

To show the orientation of the car also in the destination, change the condition of the for-loop
back to size() instead of size()-1 and add this if statement in front of the line that changes the

color to yellow:

Which prevents the destination tile from having its color changed.

3. Generate driving ‘instructions’
We will generate a set of instructions which the car which was built in previous assignments

‘understands’. The Rover class has methods like drive() and steer() which can be used for

driving. They both have an integer as a parameter, and can be called like these examples:

To simplify the instructions, we could use a String to transfer the instructions from the Path

finding app (the one we are working on now) to the Rover app (the Arduino app previously

made).

‘Commands’ sent from the Path finding app to the Rover app could look like:

or packed together:

Add two class variables which we will use to store the instructions and a constant which

represents the size of a tile in the real world:

d100
s-20
d30

drive(100); // drive one meter
steer(-20); // steer to the left
steer(20); // steer to the right
...

d100s-20d30

int steer = next.orientation - p.orientation;
if (steer<-180) steer = steer + 360;
if (steer>180) steer = steer - 360;

if (p!=destination)

https://www.javatpoint.com/final-keyword

Assignment 7

© University of Twente 7-7

Make sure the variables driveInstruction and drive are set to their default values (same as

above) every time a new path is calculated. Add two lines of code to the method that calculates

the path for this.

Variable drive will be increased for each tile the car drives: if the car for example drives straight

for 3 tiles, we simply add 30 (tileSizeCM) for each tile, so the instruction will become “d90”.

In the method you just created (which does the comparison), we will determine the driving
instructions and add them to the String driveInstruction. In pseudo code, the things that must

be done are:

Some parts are already written as comments, as these do not lead to code, but are meant to

clarify things.

Some hints: to add something to the driving instructions you could use something like:

In case of a turn, the last part would be "s"+steer.

The pseudo-code “give drive a (start-)value of tileSizeCM” simply means: drive = tileSizeCM.

The generated drive instructions should be almost complete now. Only the last drive is not added

to the instructions. To fix that, in the method that calculates the path, at the end, add:

After this, print the instructions to the Console, using System.out.println().

Now test if the instructions generated are Ok.

4. Animate the path of the car
To show the movements of the car in a little bit more realistic way, we could animate the path.

This means the for-loop which shows the path in the method that calculates the path would have

to be replaced by something that shows it in a time based fashion, eg. every step after a short

time.

We will realize this with a timer. Add a timer as a class-variable to the Userinterface class:

private final int tileSizeCM = 30; // size of a tile in cm (in the 'real world')
private int drive = 0; // keep track of distances to drive (straight)
private String driveInstruction = ""; // save the drive instruction

if no steering necessary (steer==0) {
 increase drive by tileSizeCM
}
else { // a turn will be made
 // before making a turn, save driving distance (if there):
 if a previous distance to drive was set { // (drive>0):
 add it to the driving instructions (add "d"+drive to the driving instructions)
 }
 // after a turn, we always have to drive to the next tile:
 give drive a (start-)value of tileSizeCM
 add the angle to the driving instructions // (add "s"+steer to the driving instructions)
}

driveInstruction = driveInstruction + "d"+drive;

driveInstruction = driveInstruction + "d"+drive;

Assignment 7

7-8 © University of Twente

Import the Timer from the javax.swing library. Initialize it at the end of the constructor:

Add the method showPath() to the class.

Find the for-loop which shows the path in the method that calculates the path. Move (cut) most

of the lines inside the loop, except the line with System.out.println(), to the method showPath()

(paste).

After doing this, you will get errors, because the variable i which was used as the counter of the

for-loop, is not in that method. Add a new variable to be used as a counter as a class-variable
and replace all occurrences of variable i in showPath() with that variable. At the end of the

method which calculates the path, initialize the new counter with 0 and start the timer.

Increment the counter by 1 at the end of the method showPath().

The timer must be stopped if the counter is equal to the size of the path. Add an if-statement at

the start of showPath() which checks that and if true, stops the timer.

Test the application again, to see if the path is shown animated.

You might notice that the application no longer shows the proper driving instructions. That is

because the instructions are now generated while the timer is running and must be shown after

the animation is complete. Find the two statements that were added at the end of the method

which calculates the path (one with the final addition to the instructions and one which prints the

instructions) and put them at the spot where the timer is stopped, in showPath().

Finish
If you did not do this, add a title to the application. Check if you have added sufficient comments

in the code. If you have not done so, do it now. Make sure there is Javadoc formatted

documentation for each method. In Eclipse you add Javadoc documentation by typing /** before

the method and then pressing Enter.

Make sure the layout of code is neat. Eclipse can automatically do that for you via Source >

Format (or CTRL-SHIFT-F).

Test the application and demonstrate it to an assistant or lecturer.

Summary
Today you have created an interactive editor and learned how to realize the logic and interaction

for such an application.

In addition, you have learned the following.

 Integrate external code into your own application.

 Applying algorithms like the A* path-finding algorithms in a Java application.

 Using and applying event handlers for multiple components.

 Applying dynamic application logic using selection statements.

private Timer timer;

// Create new timer which calls method showPath() every 200ms
timer = new Timer(200, (e)->showPath());

Assignment 7

© University of Twente 7-9

Appendix: send the driving instructions to the car
To send the driving instructions to the car, both apps must communicate with each other. In past

lectures other examples were given which use communication:

 The weather station app was able to get temperature data from a connected Arduino with

temperature sensor (details how to setup communication were given in the appendix of

assignment 3).

 An example how to remote control the Rover car with your phone was given in practical

assignment 1.

 Further examples of communication were given in practical assignment 3 and for instance

these Blog posts.

This appendix will show how to send the driving instructions from the Java app to the Arduino

running the Explorer sketch via USB, with an addition to make it able to receive the instructions.

Create an Arduino app that can read the driving instructions

Test this example sketch read_command_data_from_serial.ino. This sketch can read

instructions via the Serial port. To test it run it on an Arduino, leave the USB cable connected,

start the Serial Monitor and type commands:

If you for instance type “d200s15d-30”, it should give:

Now all we must do is add this to the Arduino sketch of the Rover car,

and it can read commands.

Make sure the speed matches the
speed as set in the sketch

Type commands here

https://home.et.utwente.nl/slootenvanf/appdev/
https://home.et.utwente.nl/slootenvanf/appdev/
https://home.et.utwente.nl/slootenvanf/wp-content/uploads/appdev-slides/LegoPracticalSession1.pdf
https://home.et.utwente.nl/slootenvanf/wp-content/uploads/appdev-slides/LegoPracticalSession1.pdf
https://home.et.utwente.nl/slootenvanf/wp-content/uploads/appdev-slides/LegoPracticalSession3.pdf
https://home.et.utwente.nl/slootenvanf/tag/esp/
https://home.et.utwente.nl/slootenvanf/div/arduino/read_command_data_from_serial.ino

Assignment 7

7-10 © University of Twente

Make Java app send instructions via Serial connection

How to setup a Serial connection for a Java project (in Eclipse) was detailed in appendix 1 of

assignment 3. We will repeat it briefly.

First, add the jSerialComm library to the project. Download it as a .jar file here. In Windows

Explorer, copy the .jar file. In Eclipse: right-click the main project folder and paste it into that

folder. Next, add the library to the build path: right click it, and select Build Path > Add to Build

Path.

Import the library by adding the following line at the top of the userinterface class:

import com.fazecast.jSerialComm.*;

Next, add the example code from this text file to the userinterface class.

Call the initializeSerialPort() method at the end of the

constructor.

Before you start testing, set the proper values for the class-variables
comPort and Baudrate. They must be the same as used in the Arduino

IDE.

Call the send() method with the driving instructions at the same spot

as where it is printed:

When testing, make sure the Serial Monitor of the Arduino IDE is

NOT running! (close it).

First test with the example sketch read_command_data_from_serial.ino.

You should see the response of the Arduino in the Console (the actual commands might differ):

Make Rover car respond to commands

Based on the previous test sketch, the original sketch for the car was extended with two methods
readCommand(), doCommand() (based on showCommand()). When the GO button is pressed, it will

process the instructions (starts carrying them out). See the if-statement in the loop():

System.out.println(driveInstruction); // print driving instructions
send(driveInstruction); // send it to the Arduino

On a Mac, comports

are looking different.

It might be something

like
/dev/tty.usbmodem* or
/dev/tty.usbserial*

There is a piece of

code in comments
(“// get a list of

available ports”)

which you might un-

comment to see a list
of ports.

https://fazecast.github.io/jSerialComm/
https://home.et.utwente.nl/slootenvanf/div/arduino/serial.txt

Assignment 7

© University of Twente 7-11

You can download the modified Rover sketch rover_with_comm_v2.ino here and test it.

Holding the instructions temporarily (in the variable instructions) until the Go button is pressed

allows us to transfer the commands while connected via USB cable, disconnect the car, place it

on the start tile (or any start-position) with the proper orientation, and hit ‘Go’.

https://github.com/vanslooten/EVSHield_examples/blob/master/rover_with_comm_v2.ino

