
Application Development

© University of Twente 6-1

Assignment 6

Content Application Development Day 6
Lecture

In the lecture Inheritance, userinterfaces and algorithms were introduced. This assignment
covers several skills learned in previous lectures and assignments, but this time with less detailed

explanation.
Tutorial

In the tutorial you will practice building an interactive map editor with path-finding capabilities. It
is for a large part based on examples found online.

At the end of day 6 you will be able to
◘ Create a userinterface with advanced interaction

◘ Use and apply libraries and code imported from online examples

◘ Apply A* pathfinding algorithm in a Java application.

◘ Realize a map editor based on tiles (panels).

Reading

Book: Head First Java: chapters 12-13,15,16 or from ‘Aan de slag met Java’: chapters 9.1-9.4 +
10.1-10.9

Extra exercise

The topics in lesson 6 are provided with examples that can be used in this assignment.

You can go through the exercises from the chapters mentioned above to increase your
understanding of the subject matter.

Assignment 6

6-2 © University of Twente

Create an interactive map editor with path-finding capabilities

In this tutorial-based assignment we are going to make an editor which can be used to create a

map from a room, indicate a start and a destination (for a robot), and extend it with path-finding
capabilities.

On the design of this application

Normally you would make a design for all elements of the application. To make this assignment
not too complex, we resort to already existing solutions found on the internet and integrate these

into a userinterface we build ourselves. This means a design for this application might be
primarily a userinterface design: e.g. a sketch of the interface and the possible interactions.

In this assignment we program the dynamics of the application: the userinterface and the tiles,
the application logic (responding to clicks, checking conditions) and finding the path and

displaying it.

Online resources
To find and compare possible existing solutions to the ‘problem’, some searches were done on

the internet. Some of the search terms used are (you can also omit the word ‘java’ for more
general solutions):

path finding java
a star algorithm java
grid generate room map java
interactive edit map java
mouse pixel draw panel java

These led to these two (partial) solutions:

• For the path-finding problem we found a Java version of the A* algorithm. The java files

for this solution are in the folder “pathfinding”. Unfortunately, the original website is no
longer available.

• For a tile-based map editor we found this solution (at the bottom of the page, post by
“Gilbert Le Blanc”), the PixelPainter class and it’s helper classes which you can find in the

folder “userinterface”.

These two solutions are available as folders in the zip-file of this assignment and can be used as
packages in the Eclipse project of this assignment. In this assignment we will build a

userinterface based on the PixelPainter class and using the path-finding solution.

Table of Contents
Create an interactive map editor with path-finding capabilities .. 2

1. Create project & user interface .. 3

2. Add methods to the Userinterface class ... 5

3. Integrate the PixelPainter class ... 5

4. Integrate path-finding code .. 8

Finish ... 10

https://stackoverflow.com/questions/30356545/java-creating-a-jframe-using-gridlayout-with-mouse-interactive-jpanels

Assignment 6

© University of Twente 6-3

1. Create project & user interface
Create a new project.

Copy the two folders from the zip-file and paste them into the src folder of the project:

There will be some errors in the ColorListener class, which you can ignore for now. In the
package userinterface, add a JFrame for the userinterface, name it Userinterface. The project

should now look like:

Create userinterface

Set the layout of the contentPane to GroupLayout. Add two JPanels and make them both auto
resizable:

Assignment 6

6-4 © University of Twente

If the left panel does not have the name ‘panel’, rename it to ‘panel’. Set

the layout of the left panel to GridLayout, and the right panel to

GroupLayout.

Add a label, 3 radio buttons and a button to the right panel. Make sure the
titles of the radio buttons are ‘Obstacle’, ‘Start’ and ‘Destination’. Set the

first radio button as selected.

Make the 3 radio buttons member of the same button group, name this
group ‘tileType’: first right-click one of the radio buttons and choose Set

ButtonGroup > New standard, then change its variable name to tileType:

Make the other 2 radio buttons member of the same group by right-clicking them and choose Set
ButtonGroup > tileType.

Assignment 6

© University of Twente 6-5

To make the relation with the colored tiles of the map stronger, you could also change the
background color of the 3 radio buttons to blue, orange and green (see color-table in section 3

also).

Save the project (File > Save All).

2. Add methods to the Userinterface class
We will first add the missing methods which cause the errors in the ColorListener class. Open

ColorListener.java. For each error, select the option to add a method to the Userinterface class:

We also need a method which will calculate the path from start to destination. Think of a name

for this method and add it to the Userinterface class. Call the method from the event handler of
the “Calc. Path” button. Add a line System.out.println("Calculate path..."); to that method

and test if pressing the button works (you should see the message in the Console).

Add similar print statements the other methods of the Userinterface class (you can just print the

name of the method).

3. Integrate the PixelPainter class
We will use a two-dimensional array of PixelPainter objects to display the editor. We need to keep

track of each panel to be able to for instance change its color (if for example we need to draw the
path of the robot).

A two-dimensional array of PixelPainter objects can be declared as follows:

Add these as class-variables to the Userinterface class.

To initialize the array of pixelPanels, add this code to the constructor (place it at the end!):

int width = 20, height = 20;
PixelPanel[][] pixelPanels = new PixelPanel[width][height];

// initialize the two-dimensional array of PixelPainter objects:
for (int y = 0; y < height; y++) {
 for (int x = 0; x < width; x++) {
 PixelPanel p = new PixelPanel(x,y);
 pixelPanels[x][y] = p;
 p.addMouseListener(new ColorListener(p, this));
 panel.add(p);
 }
}

Assignment 6

6-6 © University of Twente

To make the panel look proper, we must set the gridLayout pattern to display as a grid using the
width and height. Find the line of code that sets the layout of panel to GridLayout:

Change that to:

Run the application. The map should be drawn like this:

Clicking the tiles in the grid should
print the names of the methods that

are called in the Console (if you added
the print statements in step 2).

To check if the radio buttons work, we will add code to the method getTileType(). This method
should get the text of the currently selected radio button (which is used to select the tile type). If

you Google this: “get text current selected radio button java”. You will end up here. The answer
from ‘Rendicahya’ contains a workable solution inside the method getSelectedButtonText(). The

code used in that method is:

panel.setLayout(new GridLayout(height, width, 0, 0));

for (Enumeration<AbstractButton> buttons = tileType.getElements(); buttons.hasMoreElements();)
{
 AbstractButton button = buttons.nextElement();

 if (button.isSelected()) {
 return button.getText();
 }
}

https://stackoverflow.com/questions/201287/how-do-i-get-which-jradiobutton-is-selected-from-a-buttongroup

Assignment 6

© University of Twente 6-7

Copy this into the method getTileType(). This will result in some errors, you can fix the imports
yourself. Check if the name of your ButtonGroup is tileType. If not, change it to the name you

used.

Run the application, click a tile, select another radio button, click a tile. If for instance “Start” is

selected, it should show the name of the setStart() method when you click a tile.

Change color of the tiles
We will use the following colors for tiles to indicate what the meaning of a tile is:

Tile color Means

White Walkable space

Blue Obstacle (not walkable space)

Orange Start position of the robot (can

be only one tile)

Green Destination of the robot (for
now, can be only one tile)

Yellow Path of the robot (from start to

destination

If a tile is clicked while ‘obstacle’ is selected, it must turn blue (it has become an obstacle). This
will result in a method call of setWalkable(panel, false): the second parameter will be false.

So in method setWalkable() we have to check this parameter. The method now looks like:

It might be a good idea to rename your parameters of this method, if they have different names.

In method setWalkable(), insert an if-statement, which checks the second parameter and

changes the background color accordingly:

Check if it works. Clicking a tile with the left mouse button should make it blue, and with the
right button should turn it white again.

Now in the methods setStart() and setDestination() add code that turns the tiles orange and
green. (a call to panel.setBackgroundColor() and panel.repaint(); is sufficient)

The basic tile editor works now, but it is possible to add multiple start and destination tiles.

Have one start and destination tile
The robot can have only one start position and (for now) there also can be only one destination.

We must remember these positions, and if for instance a start has already been set, and another
is clicked, we should erase the previous (that’s the most user-friendly solution).

To remember something, we can add it as a class-variable. To remember the start and
destination tiles, we can add variables for these. A tile is a PixelPanel. A possible way to use

these as class-variables could be:

if (walkable)
 panel.setBackgroundColor(Color.WHITE);
else
 panel.setBackgroundColor(Color.BLUE);

panel.repaint();

Assignment 6

6-8 © University of Twente

Now we can check if a start or destination was already set in the methods setStart() and

setDestination(). We take the setStart() as an example, add this code to that:

Do you understand what this does? Add a similar check to the setDestination() method and store
the destination position also.

Check if now only one start or destination can be set.

There is one more case we must consider: if ‘Obstacle’ is selected, and you click on a tile which is

already set as start or destination, the start or destination must be cleared. So in setWalkable(),

check if the clicked tile is start or destination. We show it for the start:

Add a similar check for the destination.

Similar checks should also be added to setStart() and setDestination(), to prevent eg. setting the

destination on the start or vise-versa.

4. Integrate path-finding code
To learn how the path-finding code works, we can look at the example code in ExampleUsage.java

(it is in the package ‘pathfinding’).

The first line in the main() method creates a new Map for the path-finding engine:

We will use this example to add a map to the Userinterface class. Instead of the fixed size 50, 50

we use the width and height variables of the Userinterface class.

Add the map as a class-variable:

 (import both Map and ExampleNode from the pathfinding package).

And initialize it at the end of the constructor:

As we look further at the example code, we see a setting:

PixelPanel start, destination;

// if a previous start was set, clear it:
if (start!=null)
 setWalkable(start, true);
// store start position:
start = panel;

// check if clicked panel is start:
if (panel==start) start = null; // clear start

Map<ExampleNode> map;

map = new Map<ExampleNode>(width, height, new ExampleFactory());

If an object reference

had not been set or

initialized yet, it will
have the value null.

More info.

https://www.javatpoint.com/null-keyword-in-java

Assignment 6

© University of Twente 6-9

Which prevents diagonal movement. We will use this also, so add it to the code at the end of the
constructor (remember we use variable map instead of myMap). Later on, if you for instance want

to adapt this to a particular type of car/robot, you can change this setting.

The next line shows how to add obstacles:

This is something we can use in the setWalkable() method of our Userinterface class. Add that
line to that method. To get the position (3, 3 in example), use panel.x, panel.y. The third

parameter (false in example), is in this case the variable walkable (second parameter of the

method).

The same method call should be made in the methods setStart() and setDestination() also, as
start and destination are walkable parts of the path. The third parameter must be true in these

calls.

If we look further in the example, we see the code which will find the path:

Just like the map variable, add the variable path as a class variable.

Then put the initialization part in the method which calculates the path
(which was added in step 2). The parameters are the start and
destination position (start.x, start.y, destination.x, destination.y).

The last lines in the example print the path to the Console:

You can copy it to the method which calculates the path.

Inside this for-loop we can add code which shows the path in the panel. To change the
background color of one panel inside the grid of panels, we need to access it. That can be done
via the pixelPanels array:

Add this line of code inside the for-loop and add a call to the method setBackgroundColor() of
object p, to change the background color of the panel to yellow.

Error prevention
The method which calculates the path should do some error prevention before it calculates the

path. In some cases, the method needs to be aborted. This can be done with a return statement
like this:

Warnings and errors should be sent to the standard error output (in the Console) like this:

PixelPanel p = pixelPanels[path.get(i).getxPosition()][path.get(i).getyPosition()];

if (...) { System.err.println("Error message"); return; }

An example of this

was given in the
presentation (of

lecture 6).

Assignment 6

6-10 © University of Twente

The following cases should be considered:

• If the start or destination position is not set (values are null), or if start and destination

are the same, the pathfinding should not start. Add 3 if-statements to check this.

• If after finding the path, the size of the path is 0, no path could be found. Add a warning

which deals with this situation.
• This is not really an error, but a convenience: for the destination to remain visible,

prevent it from being overwritten by the path by changing the end-condition of the for-
loop to path.size()-1 (instead of path.size())

Clearing a previous path
If the user changes the grid, eg. turns a part of the path into an obstacle,

and hits the button to calculate the path again, the previous path should
be cleared. You can check if a previous path was there with:

if (path != null) { ... }

Inside this if-statement, add a for-loop that clears each panel of the path (sets background color

to white). Hint: this for-loop is almost the same as the other for-loop. Another hint: only panels
with a yellow background should be cleared (these are still visible as parts of the path).

Finish
Add a title to the application. Check if you have added sufficient comments in the code. If you

have not done so, do it now. Make sure there is Javadoc formatted documentation for each
method. In Eclipse you add Javadoc documentation by typing /** before the method and then

pressing Enter.

Make sure the layout of code is neat. Eclipse can automatically do that for you via Source >
Format (or CTRL-SHIFT-F).

Test the application and demonstrate it to an assistant or lecturer.

Summary
Today you have created an interactive editor and learned how to realize the logic and interaction
for such an application.

In addition, you have learned the following.
• Integrate external code into your own application.

• Applying algorithms like the A* path-finding algorithms in a Java application.
• Using and applying event handlers for multiple components.

• Applying dynamic application logic using selection statements.

System.err.println("This is an error.");

An example of this

was given in the
presentation (of

lecture 6).

