
Application Development

© University of Twente 1

 Assignment 3

Content of Application Development on Day 3

Lecture

The lecture explains object-oriented programming, methods, parameters, and the scope of

variables.

Tutorial

In the tutorial you practise creating classes and methods, and applying global and local variables.

You also learn how a program can use data from the Internet.

At the end of day 3 you will be able to

◘ Design and create classes and methods

◘ Use global and local variables

◘ Write expressions

◘ Write a program that uses data from the Internet

Reading between day 3 and day 4

Book:

Head First Java (K. Sierra & B. Bates): chapter 10, 13.

Aan de slag met Java [Getting Started with Java] (Gertjan Laan): chapter 3.9 - 4.

Online:

javatpoint.com:Swing introduction, JLabel, JPanel.

http://www.javatpoint.com/java-tutorial
http://www.javatpoint.com/java-swing
http://www.javatpoint.com/java-jlabel
http://www.javatpoint.com/java-jpanel

Application Development assignment 3

2 © University of Twente

Creating a Weather Station
We are going to create an application that can display the temperature of several weather

stations in the Netherlands, as well as the average temperature of those weather stations.

You are given a WeatherStation class for reading the data. This class can read data using an XML

file. XML files are used on the internet to provide data in a structured way (in a specific format).

Buienradar is a site that provides weather data from several weather stations in XML form.

The example used in this assignment is a weather station with temperatures of four stations.

Tutorial Steps
1. Design and create the user interface

2. Add the WeatherStation class to the project

3. Create the display of the temperature

4. Add multiple instances of the class to the user interface

5. Calculate the average temperature and display it

The steps are explained in detail below. You will have to apply many of the skills you have

learned in the previous assignments. It may be useful, therefore, to check these assignments

every now and then.

1. Design and create the user interface
First, we create one of the four Panels for displaying

the temperature with the name of the weather station.

Then we use that Panel several times (copy) to display

the data of several weather stations. Also, we create a

separate part of the user interface in which the

average temperature is displayed (at the bottom in the

example).

Start with a new project “Assignment3”. Add a JFrame

and a JPanel (both via File > New Other, and then

under WindowBuilder, Swing Designer). The JFrame

will be the user interface of the entire application;

name this “Assignment3GUI”. The JPanel becomes a

Panel for displaying the temperature of 1 station,

which we will use several times. Call this

“TemperaturePanel”, for example:

http://www.javatpoint.com/java-jpanel

Application Development assignment 3

© University of Twente 3

Using the Designer, add two labels (JLabel) to the

TemperaturePanel, one of which with a large font (e.g.

font size 48), which we will use to display the

temperature. The smaller label is used to display the name

of the weather station. Remember to choose a suitable

layout (property of the Panel) and meaningful names for

all the components.

Before continuing, save all the files via File > Save All.

Now we are going to add the Panel to the main user

interface. Switch to Assignment3GUI.java. Set the layout

of the contentPane to GroupLayout (or any layout you

prefer). Add a JPanel to the user interface:

We are now going to morph (change) this Panel into the

TemperaturePanel we have just created. In the list of

Components click with the right mouse button on the panel and

select Morph, Subclass.

You previously practiced

'Morphing' in Assignment 2

with the DrawingPanel class.

If you have problems, Save

All files and retry.

http://www.javatpoint.com/java-jlabel

Application Development assignment 3

4 © University of Twente

Type “TemperaturePanel” in the screen and click Ok.

2. Add the WeatherStation class to the project
The zip-file of the assignment contains a file called WeatherStation.java. Make sure you have

extracted the zip file. Copy the Weatherstation.java (using the Windows Explorer) file and paste

this in Eclipse by clicking with the right mouse button on the default package and selecting Paste:

The project will now look like the image on the right.

Application Development assignment 3

© University of Twente 5

3. Create the display of the temperature
We can now add an object of type WeatherStation to the

TemperaturePanel-class, so we can use methods of this

object to set up the station and retrieve data (like the

temperature and name) from that station by calling the

method.

In the pieces of sample code below, the declaration of the

variable (step 1) for the object is shown in red and the

assignment using the new statement in blue (step 2).

First, declare a class variable w of type WeatherStation and

make it private:

Next, use a new statement to create the object for w. We do this at the end of the constructor:

As you can see, the components of the user interface are defined in the constructor. These are

the two labels that we have created using the WindowBuilder. The names of the labels (in this

example labelTemp and labelStationName) may be different for you.

After the object for the weather station has been created, we can request things from the object

by means of the method calls. For instance, the Weather Station has a readTemperature()

method to retrieve the temperature. You can get a list of all methods of object w when you type

a ‘w’ followed by a dot:

This is the constructor of

this class. This is a

special method that is

used for, among others,

creating objects within

the class.

A constructor has the

same name as the

class.

More info @ slide 7 of the

presentation

Creating an object consists of two

steps:

1. Creating a (class) variable for

the object

2. Creating the object in memory,

with a new statement

More info @ slide 17 of the

presentation

Application Development assignment 3

6 © University of Twente

We can request the temperature from object w by calling the readTemperature() method. This

method results in a String. So, we create a new variable of type String and give it the value that

results from the method call:

Now we are going to display the value of the temperature in the label for the temperature. To do

this, the label has a setText() method.

Type the variable name of the label of the temperature (in this example labelTemp), followed by

a dot. Start typing the method name (setText) and select that method from the list by double-

clicking it:

Next, a selection screen appears where you can select a parameter from a number of

suggestions:

Application Development assignment 3

© University of Twente 7

Eclipse has detected that we have created a new variable temp of type String on the previous

line, as a result of which it is also included in the suggestions, because it "fits" as a parameter (it

is of the same type). We select the suggested temp variable by double-clicking it. We close the

line with a semicolon. The three lines of code we created is finished, and looks like:

You can now check if the temperature is actually displayed: run the

program using the Run button .

Include a comment for the lines you have just written.

Similarly, add more code which displays the name of the weather station

in the other label.

Variable temp

gets a value

More info on

parameters of

methods @ slides

9+10 of the

presentation

Variable temp is used as a

parameter in a method-call

Application Development assignment 3

8 © University of Twente

4. Add multiple instances of the class to the user interface
The WeatherStation class can retrieve data from a number of weather stations. When creating

the object, you can specify the ID of a weather station using a parameter. If this parameter is

missing, the default weather station from the XML file is used. To use multiple weather stations,

we must know the station ID. We can find this in the XML file at the following address

xml.buienradar.nl (this is unfortunately in Dutch). Open this address in a web browser and view

the XML file that is displayed. Data of a weather station always starts with:

Followed by the data of that station.

If we want to use data from a different station, we need to specify the id as parameter when

creating the object:

Because we want to create multiple panels later, each with different IDs, it is useful to make the

ID configurable by making it a parameter for the constructor. Therefore, we adjust the

constructor of TemperaturePanel, so that this is assigned a parameter ID. Because this ID is an

integer, the type will therefore be int. Change the head of the constructor to add the parameter

ID:

And add the id variable as a parameter when creating the object of the Weather Station:

Now save the TemperaturePanel.java file (CTRL+S). Once you have done this, an error message

will appear in Assignment3GUI.java at the call of the constructor:

To correct this, we need to add a station ID as a parameter:

https://xml.buienradar.nl/

Application Development assignment 3

© University of Twente 9

The TemperaturePanel is now ready to display data of multiple stations. To make sure that all

changes work, you must save all files in your project (File > Save All).

We can now make a copy of the panel by clicking it with the right mouse button and selecting

Copy:

We paste a copy in the contentPane:

And then move the mouse to the location in the WindowBuilder, where we click on the location

where we want to copy:

We change the name of the fresh copy to “panel2”:

Application Development assignment 3

10 © University of Twente

We have now created a new object of the TemperaturePanel class, also

called a new instance.

Now change the id for panel2 in the source code:

The result:

You may now add 1 or 2 panels of other weather stations.

Read more on

creating new

objects @ slides

7+8 of the

presentation

Application Development assignment 3

© University of Twente 11

5. Calculate the average temperature and display this
To display the average temperature of all the stations in our application, add a label to the user

interface. See the example on the right:

To calculate the average, we need the temperature as

a number (of type double). The temperature as we use

it now is text (a String). So we have to convert a

String to a double. An example:

Add a method to TemperaturePanel

We can request the temperature as a number from

each panel, if we add a new method to the

TemperaturePanel class, which: a) requests the

temperature from the weather station, and b)

converts this into a number (double). You can design

(think of) and add (write code) this method and add it

to the TemperaturePanel class.

You have previously used a method that gets the

temperature from a weather station (in step 3 of this

assignment).

Once you have created the method, you can get the

temperature from each panel in the Assignment3GUI

class by calling this method for each panel. A draft for

these method calls and calculation will look like this:

The name of the method you have created and the calculation have been shaded grey here. You

can add this code at the end of the constructor, all the way at the bottom of the class.

After calculating the average, the value can be displayed in the label you have created for that

purpose, by calling the setText() method of that label.

The outcome of the calculation is a number. The setText() method expects a String as parameter.

You can place a number in the label by attaching the number to a String using the + operator:

The result of the calculation can be a number with many decimal

places. Make sure you have an accurate presentation of the output,

i.e. 1 or 2 decimal places. Use what you have learned about

formatting output in the lecture.

String text = "21.45";
double d = Double.parseDouble(text);

More info @ slide 16 of

the presentation

Application Development assignment 3

12 © University of Twente

Finish
Add a title and comments to the application (as you learned in Assignment 1). Do this for both

Java files. Don't forget to enter both your names and student numbers in the comment at the

@author field.

The WeatherStation.java file is not yours, so you do not need to change the comments or author

information there.

Before you have the assignment reviewed please check:

• Proper comments, names and student numbers in headers of Java files

• The average temperature is calculated and properly formatted

Check-off assignments
Have your assignments checked by the lecturer or assistant no later than at the next lecture.

That is the deadline, which is applicable for all assignments (this will not be repeated further).

The purpose of the check is that you demonstrate that you understand the subject matter. The

assignment is graded as a pass (1) or a fail (0).

Assignments 2 through 7 count towards the grade (details have been provided in the lecture).

Extra challenge
Display the humidity in the TemperaturePanel. Add a label for that, and use method readValue()

of the WeatherStation class to get the humidity like this:

String humidity = w.readValue("luchtvochtigheid");

The appendix shows how to setup a serial connection to a temperature & humidity sensor build

with an Arduino and display the values from these in this application. If you have time left, you

could start adding that.

Summary
On this third day you have written Java code and learned how to apply variables in expressions to

run calculations.

In addition, you have learned the following.

• Using expressions to perform calculations.

• Calling and determining the right methods from existing classes.

• Using variables as parameters for methods.

• Coming up with and creating a method.

Application Development assignment 3

© University of Twente 13

Appendix 1: display local weather data from a

connected temperature sensor

Step 1: setup communication

Install the jSerialComm library

To be able to communicate via a serial connection we will add the jSerialComm library to the

project. Download it as a .jar file here. Copy the .jar file in the Windows Explorer. In Eclipse,

right-click the main folder (“Assignment3”) and paste it into that folder:

Next, add the library to the build path: right click it, and select Build Path > Add to Build Path.

Now you can use the library in your project.

Add code for the serial connection

First import the library by adding the following line at the top of Assignment3GUI.java:

import com.fazecast.jSerialComm.*;

Next, add the example code from this text file to the class Assignment3GUI: copy the code and

paste it just before the very last closing bracket: }.

Call the initializeSerialPort() method at the end of the constructor. This is right after the spot

where you show the calculated average in the label.

Next, find the lines with the class-variables used for communication:

Change the variable commPort to reflect the COM-port your Arduino

uses (the number will be different). You can find the COM-port in the

Arduino IDE: Tools > Port.

Test

You can now run a sketch on your Arduino and should see the output

of the sketch in the Console of Eclipse if you run this Application.

Make sure:

- The Serial Monitor of the Arduino IDE is closed

- The Arduino is connected with the USB cable

- The proper COM port is used in the Java Application

On a Mac, comports

are looking different.

It might be something

like
/dev/tty.usbmodem* or
/dev/tty.usbserial*

There is a piece of

code in comments
(“// get a list of

available ports”)

which you might un-

comment to see a list

of ports.

https://fazecast.github.io/jSerialComm/
https://home.et.utwente.nl/slootenvanf/div/arduino/serial.txt

Application Development assignment 3

14 © University of Twente

Step 2: adjust TemperaturePanel class to display local

temperature

To be able to display the temperature coming from the Arduino, we need to adjust the class

TemperaturePanel.

First we add a new constructor to the class TemperaturePanel:

public TemperaturePanel() {
}

And we move all userinterface-related code to this constructor.

The original constructor now looks like this (or something similar):

public TemperaturePanel(int id) {

this(); // call base constructor
 w = new WeatherStation(id);
 String temp = w.readTemperature();
 labelTemp.setText(temp);
 lblStationName.setText(w.readNameStation());
}

The first line of code, the call to this() will not be there, so add that to that constructor. It calls

the other constructor (which now contains only the userinterface code).

It is likely that you will have some errors now, because the variables labelTemp and

lblStationName are inaccessible, because they are in the other constructor. We will make class-

variables of those. Find their definition in the other constructor, double click them to select them

and right-click:

Choose Refactor > Convert Local Variable to Field… which will turn it into a class-variable. Do this

for both variables.

Application Development assignment 3

© University of Twente 15

The constructor with the userinterface-code should now looks like (there might be more code):

You may change the text of the label for the StationName to “local”.

Now add a setter (a method which can set a value) for the variable labelTemp:

We will use this method to change the temperature displayed.

Save the file TemperaturePanel.java (CTRL+S).

Switch to the userinterface class (Assignment3GUI.java) and add the following code to the

receive() method:

This might result in an error because panel4 is not known (here). We assume the name of one of

your temperature-panels is panel4, but you might have different names. Find one of the panels in

the userinterface code in the constructor (somewhere above) and change that variable into a

class-variable (Refactor > Convert Local Variable to Field…). Make sure the variable name

matches with the one use in the method receive().

Running the application now might result in a crash:

This is because the getTemp() method tries to get the temperature from the WeatherStation w,

but this has not been initialized for the TemperaturePanel which displays the local temperature

(that panel is not connected to an online WeatherStation):

if (readline.startsWith("Temperature:")) {
 String[] words = readline.split(" "); // split the line into words
 double temp = Double.parseDouble(words[1]); // get the second word
 String formattedTemp = String.format(Locale.getDefault(), "%.1f", temp); // format it
 panel4.setLabelTemp(formattedTemp); // set the temperature-label in the panel
}

This will go wrong,

because w is null

Application Development assignment 3

16 © University of Twente

A fix for this can be:

Try if everything works as expected now.

If you have added a label to display the humidity in the TemperaturePanel (which was part of the

extra challenge of the regular assignment), you can display the humidity you get via the serial

connection also.

Start by adding a setter which can set the label for the humidity in the class TemperaturePanel,

just like we did for the temperature label.

Also add a new if-statement to the receive() method of the Assignment3GUI class. Copy the

original if-statement, and change the lines to match for humidity (you will have to understand the

code to accomplish this).

Add a temperature-warning

If you would like to add a warning if the temperature is (too) high, you could add something like:

Fix problem of average temperature

The average temperature shown is calculated only when the app starts, and at that moment, the

temperature is not yet received from the Arduino. Therefore the average is not correct. To fix

this, move the code that calculates the average to a separate method. This means the objects for

the panels will have to become class variables. Call the new method in the receive() method.

