
Application Development

© University of Twente 1

 Assignment 2

Content Application Development Day 2

Lecture
The lecture covers the key language elements of the Java programming language. You are

introduced to numerical data and variables and will learn to use these to create expressions.
Tutorial

In the tutorial you will use your knowledge of the language structure and language elements by
writing simple programs, and you can write mathematical expressions.

At the end of day 2 you will be able to

◘ identify basic Java language components

◘ write a basic Java program

◘ describe the process of creating and running Java programs

◘ name and use different data types for numerical data

◘ write expressions

◘ use the standard mathematical library

◘ use methods

Reading between day 2 and day 3
Book:

Head First Java (K. Sierra & B. Bates): chapter 3, 12 (p 364-371).
Aan de slag met Java [Getting Started with Java] (Gertjan Laan): chapter 3 – 4.2.

Online:

javatpoint.com: Swing introduction, Graphics-in-swing, JPanel.

Extra exercise

Do the exercises and try the examples which come at the chapters indicated above, to increase
your understanding of the subject matter. You can use this assignment as the basis for drawing

graphics. How to practise examples and exercises from the book using Eclipse is explained in the
appendix of Assignment 1.

http://www.javatpoint.com/java-tutorial
http://www.javatpoint.com/java-swing
http://www.javatpoint.com/Graphics-in-swing
http://www.javatpoint.com/java-jpanel

Application Development assignment 2

2 © University of Twente

Check-off assignments
You may complete assignments with 2 people. You don't have to, so you can also do them on

your own. It is not allowed to complete assignments with 3 or more people and without any

further checks this will automatically result in an unsatisfactory mark (‘failed’).

Have your assignments checked by the lecturer or assistant no later than at the next lecture
(that is the deadline!). The purpose of the check is that you demonstrate that you understand the

subject matter. The assignment is graded as a pass (1) or a fail (0).
Assignments 2 through 7 count towards the grade (details have been provided in the lecture).

Drawing a simple shape
We are going to create an application that can draw a simple shape. This shape fills the screen,

even when we resize the application. The color of the shape can be adjusted by entering the RGB
values (three numbers) for the color components red, green and blue. These numbers can have

values 0-255. Examples of how to draw shapes are given in the appendix.

Tutorial steps
1. Design and create the user interface
2. Write code for drawing

3. Set color

4. Read user input
5. Drawing with different colors

6. Draw the colored shape

These steps are explained in detail below.

Application Development assignment 2

© University of Twente 3

1. Design and create the user interface
The user interface consists of two parts:

• A part for entering the RGB values
• A part for drawing

We can use a Panel for both parts, which is a component which holds other components, i.e. a

container. You can also draw in a Panel.

Draw a sketch of the user interface that shows the division into Panels. A Panel contains three
input fields, and an Ok-button (JButton) to execute the input of the values.

After you finish the design, you can start creating the user interface.

Start by creating a new project, via File > New > Java
Project. Name the project “Assignment2”.

Add a JFrame (shortcut: CTRL-N, you can find JFrame under

WindowBuilder > Swing Designer). Name it
“Assignment2GUI” and at ‘package’ fill-in “userinterface”.

Set the layout to “GroupLayout”: in the WindowBuilder, click on contentPane, and select the
Layout at Properties:

The steps to create a user
interface are covered briefly. If

you do not remember exactly

how to do this, check Assignment
1.

You can switch between the

source code Editor and the
WindowBuilder (Design) with the

tabs at the bottom:

Tip: If the tabs do not appear,
open the file by clicking it with

the right mouse button:

Open With > WindowBuilder…

Application Development assignment 2

4 © University of Twente

Now add two JPanels, a smaller one on top, which will be used for
input of colors and a large Panel, to be used for drawing below that.

You can find JPanel under Containers in the Palette.

Give both Panels meaningful variable names:

We use the top panel to input color values, so name that “panelInput”

(under Properties, field ‘Variable’). The bottom panel will be used for
drawing a shape. Name that “panelDraw”.

It will look this this, for example:

Set the layout of the smallest Panel to “GroupLayout”. Now add a label (JLabel), three text fields
(JTextField) and a button (JButton) to this Panel and make sure it looks like:

Give the components meaningful names. The structure should look similar as shown below. Also
pay attention to the location of the components. The new components are in the Panel that we

use for input:

The user interface is now ready. Run your program using the Run button to check if
everything works.

It is possible that your application
does not properly fit in the Window.

In that case, you can change the

size of the window and various
components to make it fit better.

You can also look up the method
call setBounds (...) in the code and

change its parameters if necessary.

Application Development assignment 2

© University of Twente 5

If you do not like the way the user interface elements are displayed, you can customise the style,

using the Look-and-feel button at the top right of the WindowBuilder.

If you select Windows (located under JRE), it will look more like a Windows user interface.

Note: for this to work, you must first enable the “Apply chosen LookAndFeel …” option via
Window > Preferences. This is located in the Preferences under WindowBuilder, Swing,

LookAndFeel.

Make the draw-button the default button

To make the draw-button the default button which will be triggered when the ENTER key is
pressed, add the following line of code at the end of the constructor Assignment2GUI():

Application Development assignment 2

6 © University of Twente

2. Write code for drawing
To be able to execute drawing commands we must create an extended version of the class

JPanel.

Add a new class to the project (File > New > Class). Name it “DrawingPanel” and type

“javax.swing.JPanel” at the field Superclass:

Before you press Finish, make sure the option “Inherited abstract methods” is enabled and other
options are disabled.

Now save the whole project (File > Save All).

Also check if the project does not contain errors: if there are, fix those before you continue.

Pay attention to upper
case and lower-case

characters when copying

the values for Name and
Superclass here.

For example, in

javax.swing.JPanel you
must write JPanel with a

capital J and P!

At Superclass, you may

use the Browse button
as help, to avoid

mistakes.

Application Development assignment 2

© University of Twente 7

Next, we change panelDraw in the user interface into a DrawingPanel. Right-click the panel in the

list of Components and select Morph > Subclass:

Type “DrawingPanel” in the text field and click on Ok:

Now a drawing method can be added to the DrawingPanel class:

Application Development assignment 2

8 © University of Twente

Switch to DrawingPanel.java (if not opened in a tab yet, double click it in the Package Explorer).
Select Source > Override/Implement Methods… from the menu.

In the list that appears, find JComponent and open that (click on the triangle in front
JComponent):

Find the paintComponent() method of JComponent and select it. Then click OK.

The code now looks like:

You can now add drawing methods (of the Graphics class) to the method just created. Use the

examples in the appendix to draw a few sample shapes. In the examples, the parameter of the
paintComponent() method has the name ‘g’. If the generated code uses arg0 as a name for the

parameter, its useful to also change its name into ‘g’. This will make it easier to copy code from
the examples into the paintComponent() method. Make sure you add the drawing code after the
line with super.paintComponent(g);.

Run your program using the Run button to check if the shapes are drawn correctly.

Examples of drawing

with Java and the
related techniques are

explained in appendix 1

of this assignment.

Read that first.

Change to g

Change to g

https://docs.oracle.com/javase/8/docs/api/index.html?java/awt/Graphics.html

Application Development assignment 2

© University of Twente 9

Add variables and methods to a class
In the next section, methods and variables are added to a class. Variables are usually added at

the beginning of the class (class variables) or at the beginning of a method. Methods are usually

added at the end of the class. Where that is exactly, is explained below.

End of the class. You can

add new methods before the

closing curly bracket '}' .

Start of the class. You can

add class variables after the

opening curly bracket '{'.

Start of the method (head).

You can add variables or
code after the opening curly

bracket '{' .

Curly brackets '{' '}' are

sometimes called curly braces
also… In Dutch, they are called

‘accolades’.

End of the method. You can
add new lines of code before

the closing curly bracket '}'
.

Application Development assignment 2

10 © University of Twente

3. Set color
To draw with a certain color, the DrawingPanel class must be able to

remember the font color.

First add a variable for the color to the DrawingPanel class. Do this at the top

of the class, on a blank line after the opening bracket ‘{’:

Color drawColor;

This variable is of the type Color. This is a class from a Java library. If this is the first time you

are using it, a light bulb appears in the margin and red lines will appear underneath the unknow

word. Click on the light bulb and double-click on “Import Color” to use Color from the java.awt

library (we will import that library):

We are going to make the default color black by assigning a value to the drawColor variable. To
do this, we change the line with the variable we just created into:

Color drawColor = Color.black; // default drawing color black

We now need to add a method which can set the color (assign a value to the variable drawColor).
This method is given below. Add the code to the DrawingPanel class. Note the location: Add the

code at the bottom of the class, on a blank line before the last closing bracket '}'. This method
gets three variables r, g and b as parameters and uses those to create a new color (new Color)

which is assigned to the class variable drawColor that we have just created.

public void setColor(int r, int g, int b) {

drawColor = new Color(r % 256, g % 256, b % 256);

repaint(); // draw again because the color has been changed.

}

Drawing with

Java and the
related

techniques

are explained

in appendix 1.

Application Development assignment 2

© University of Twente 11

4. Read user input
Double-click on the Draw-button in the user interface to create an

Event Handler. You also did this in the previous assignment.

To read the values entered from the text fields, you must call the getText() method of the text

fields. The output (the result) of this method is a String. Therefore, we first declare a variable of
type String and assign the outcome of the call of the getText() method to it. This is done as

follows:

First type the declaration of the variable followed by an = sign to assign the value:

String r =

Behind this, type the variable name of the text field:

String r = textFieldR

If we type a dot immediately after this, we get a list of methods of the text field. Find the
getText() method in that list and click on it to read the documentation of that method:

After double-clicking on the method, it is added to the code:

String r = textFieldR.getText()

Add a semi-colon ‘;’ at the end to finish the line of code:

String r = textFieldR.getText();

On the next line, you can display the value entered in the Console, by calling the println method:

System.out.println("Input value for red: "+r);

When the program is running you can use this to check if

entering numbers works. Run your program to check if

entering a number in the field for red works (press the Draw-
button). You should see this in the Console Window:

You must now repeat these steps for reading and displaying the values entered for the green (g)
and blue (b) text fields and make sure that all three values are displayed in the Console.

More on input of integers

in the presentation of the

lecture.

If the Console is not visible,
you can show it via: Window >

Show View > Console.

Application Development assignment 2

12 © University of Twente

5. Drawing with different colors
To draw using the color values entered we need to call the

setColor() method of the DrawingPanel class in the Event Handler

we have just created. This method expects three integers (r, g
and b) as parameters. However, in the Event Handler the three

values from the text field are read as String (text).

Therefore, we must convert the String to an integer. To
do this, add this code (at the end of the Event Handler):

Repeat this for the g and b values.

Now add the call of the setColor() method to the Event Handler:

We assume that you have named the Panel for drawing "panelDraw" (at step 1 of this
assignment). You might notice that an error occurs here. Also, if you do not experience an error,

please read on:

The problem might arise, when building the user interface, the order
of creation of components might differ. If button btnDraw is created

before panel panelDraw, the variable panelDraw will not be in the
same scope.

To solve this, we are going to define the variable at the right location,
as a class variable (sometimes also called a field). A class variable is

also called attribute or property of the class. A class variable is always
defined at the top of the class and accessible in all methods of the

class.

Find the declaration of panelDraw. You can also use CTRL-F to search.
The declaration looks like this:

This is a declaration and an assignment in one line. The assignment is

the part after the = sign (assignment operator). We are going to split
the declaration and the assignment. The declaration is placed at the

top of the class, where it becomes a property (or class-variable) of the
class. Below, the declaration is shown in red and the assignment in

blue.

Copy the declaration to the top of the class:

At the original location, delete the first word so only the assignment (the blue part) remains:

Tip: if you do not remember

exactly where the Event Handler
(of a button) is, you can always

double-click on the button in the
Window Builder.

Scope: region in code

where a variable (or

object) is valid.

More on input of integers
in the presentation of the

lecture.

The solution
described here to

make a local variable

a class variable (or
field), is a rather

complex procedure.
It can be done

easier, but to gain
knowledge on what

you are doing, this
procedure is better.

If you are curious
what the simple way

to do it is:

Switch to the
Designer, select
panelDraw and at the

properties, click the

small icon

(Convert local to

field).

Application Development assignment 2

© University of Twente 13

If you did get an error message at the call of the setColor() method, that should have
disappeared now, because the panelDraw variable is now valid in the entire class, instead of only

in (part of) the method: it has become a class-variable.

6. Draw the colored shape
To make sure the selected color will actually be used for drawing, we need to set the drawing

color in the paintComponent() method in DrawingPanel.java. If you have used an example
from the appendix, you have already set the color by calling the setColor() method. This call

must now use the color variable drawColor as a parameter. Find the call for the setColor()
method and adjust this as follows:

Check if previously added test shapes are now drawn using the specified color (enter values for r,

g and b and click on the button).

You now must draw a more complex shape. Some possibilities: a mushroom, a traffic light or a
pie. The shape must consist of at least two different basic shapes.

Use your own creativity to draw the shape you have chosen. Remember that you can get help to

find out what kind of drawing methods there are. You can get help in different ways:

1. In Eclipse: in the paintComponent() method, enter a ‘g’ (the Graphics-object), followed by

a dot, after which all methods of the Graphics class are listed; click on one to see what it
is/does. Drawing methods start with “draw…” or “fill…”

2. Google: search for terms like “java draw figure” or “java draw nice icon” and so on. You
might like for instance the Andoid-icon.

3. The API description of the Graphics class

Delete the test shapes you made earlier using the drawing methods (or place them in
comments).

If you want the dimensions of the shape to be dependent on the size of the Panel in which is
drawn, you can do that as follows: You can retrieve the width and the height using methods

getWidth() and getHeight().

To draw a rectangle that creates a horizon effect in the drawing, for example (see screenshot on
the first page of this assignment), you can use this code:

Finish
Give your application a title (property of the JFrame) and add comments (as you learned in

assignment 1). Do this for both Java files. Don't forget to enter your name(s) in the comment at
the @author field.

Before you have the assignment checked, make sure your shape consists of at least two different

basic shapes.

If you have time left, check out the extra challenge on the next page!

int h = getHeight(), w = getWidth();
int horizon = h/2-20;
g.setColor(Color.lightGray);
g.fillRect(0, h-horizon, w, horizon);

https://harryjoy.me/2012/05/27/drawing-android-icon-in-swing/
http://docs.oracle.com/javase/8/docs/api/index.html?java/awt/Graphics.html

Application Development assignment 2

14 © University of Twente

Extra challenge
The application is not yet entirely fool proof. What

happens when we start the application and immediately

click on the Draw button? Check the output in the
Console. A red error message probably appears here. If you scroll up, you will see that this is an

"Exception": something Java is unable to run.

In one of the lines at the top you will also see a reference to a line number in a Java file. That’s

where the error occurs. It is probably one of the lines with a call of the parseInt() method. This
method cannot handle a parameter that is not an integer. In this case, it is an empty String.

To solve this problem, we could check if there is an integer in the relevant field. And if not, we
place a zero (0) in the field.

We can use r.matches("\\d+") to check if the String read in variable r only contains digits

(integers). This expression is true if the String consists of integers. Using the Boolean not-
operator, an !, we can then build this if-statement:

if (!r.matches("\\d+")) { r="0"; textFieldR.setText(r); }

Insert this line at the location after the call to getText() (after reading the String). Repeat for the

g and b values.

Test the application.

Summary
On this second day you have written Java code and learned how to apply variables in expressions
to perform calculations.

You have also learned the following:

• Create a user interface.
• Read and use values in a user interface.

• Use drawing methods.
• Use of variables in expressions.

• Apply mathematical functions.

• Find information using the online help function.

This is not part of the assignment,

but you may add this if you like.

Application Development assignment 2

© University of Twente 15

Appendix 1: drawing with Java graphics
To start drawing inside a panel, first setup a DrawingPanel as described in step 2 of this

assignment. Next, add a paintComponent method and add drawing commands to it. The origin in
a panel is the upper left corner:

The first time you use a new class, like Color, you might get a warning bulb in the margin:

To solve, just click the bulb and double-click the first option to Import that class from the library
(in this case java.awt).

The examples below do not have the line super.paintComponent(g);. You should keep that line

from the generated code (as shown in the assignment). It should be the first line of code. (So
add the drawing code like g.setColor... and g.draw... after it)

Draw a rectangle

Draw text

public void paintComponent(Graphics g) {

 // set color:
 g.setColor(Color.blue);

 // draw rectangle at position (60,60) w x h 200x100:
 g.drawRect(60, 60, 200, 100);

}

(0,0)

(100,100)

X

y

Can you:

Change the size of the
font?

Change the position of

the text?

public void paintComponent(Graphics g) {

 // set the font:
 g.setFont(new Font("TimesRoman", Font.PLAIN, 20));

 // set color:
 g.setColor(Color.red);

 // draw a String at position (10,20):
 g.drawString("paint some text", 10, 20);

}

Application Development assignment 2

16 © University of Twente

Use Color attributes: Help-while-you-type

To find out what colors are available, just type Color followed by a dot (.):

Mix your own RGB-color

Create a new color with:

In the next example, we draw an oval using this color.

Draw an oval

Change the background

To change the background color of a JPanel, simply call the

setBackground method:

new Color(255, 204, 204)

public void paintComponent(Graphics g) {

 // define color:
 Color pink = new Color(255, 204, 204);

 // set color:
 g.setColor(pink);

 // draw oval at position (100,100) width 120, height 80:
 g.drawOval(100, 100, 120, 80);
}

setBackground(new Color(51,0,0));

Can you:

Change the oval into a

circle?

Application Development assignment 2

© University of Twente 17

Improve quality of drawing

You might notice that sometimes the quality of drawings is poor:

This can be improved by instructing the graphics renderer to improve the rendering quality:

Resulting in:

Add this code before the drawing commands.

More information.

Draw a filled shape

The previous shapes drawn by draw… methods each have a counterpart to draw the shape filled:
those methods start with fill…

So to draw a filled rectangle we use the method fillRectangle:

Draw an image

The example on the next page draws an image (in a panel). The image is first read in the
constructor of the Panel, which is called only once. This prevents the image from being read from

the file each time it is (re)drawn.

// improve rendering by turning on Antialiasing:
Graphics2D g2 = (Graphics2D)g;
g2.setRenderingHints(new RenderingHints(
RenderingHints.KEY_ANTIALIASING,
RenderingHints.VALUE_ANTIALIAS_ON));

// draw filled rectangle at position (60,60) w x h 200x100:
g.fillRect(60, 60, 200, 100);

https://docs.oracle.com/javase/tutorial/2d/advanced/quality.html

Application Development assignment 2

18 © University of Twente

Draw a polygon

A polygon is a set of lines, eg. a triangle. To draw a filled triangle that fills the entire panel:

BufferedImage image; // class variable

public DrawingPanel() { // constructor
 super();
 File file = new File("image.png"); // read image from project-folder
 try {

image = ImageIO.read(file);
 } catch (Exception e) {

System.err.println("Unable to read file");
 return;
 }
}

@Override
protected void paintComponent(Graphics g) {
 super.paintComponent(g);

 setBackground(Color.white);

 if (image != null) // if image was loaded
 g.drawImage(image, 0, 0, this);
}

// define two lists of points, x and y, and n, which is the number of points:
int x[] = new int[3], y[] = new int[3], n =3;

// define points, we use getWidth() and getHeight() to get the width
// and height of the panel:
x[0]=0; y[0]=0; // point 1
x[1]=0; y[1]=getHeight(); // point 2
x[2]=getWidth(); y[2]=getHeight()/2; // point 3

// This polygon represents a triangle with the above vertices:
Polygon p = new Polygon(x, y, n);

// draw the polygon:
g.fillPolygon(p);

